

Agenda – Monthly Teleconference Tuesday, June 7, 2022

Business Meeting: 12:30 – 1:00 PM Central Technical Session: 1:00 – 2:00 PM Central

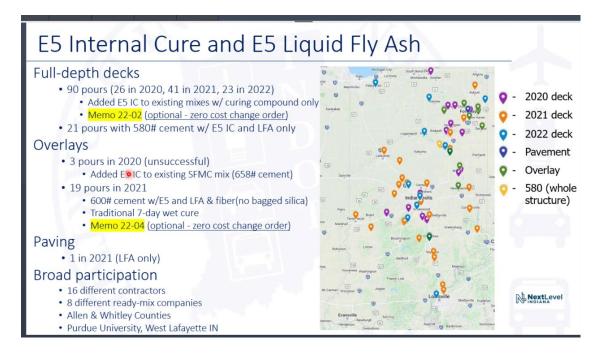
<u>12:30 PM – BUSINESS MEETING</u>

- 1. Treasury Update Treasury Report May 22 balance in good shape
 - a.) Shows Payments for the 2021 Conference Scholarships (made money on the conference)
 - b.) Payment for MWBPP portion of Deck Sealer Study \$1,200
 - c.) Balance currently \$60,305.60

2. AASHTO Committee on Maintenance Meeting (July 23-28, 2022)

- a.) Bill Oliva has retired, so there's an opening for another person to go. Typically, Officers or Director's attend.
- b.) Jim Leaden is unable to attend, Sarah Wilson will seek approval to attend.
- 3. Scholarships for MWBPP Annual Meeting Lexington, KY October 25-27, 2022.
 - a.) Discussion about the costs of the scholarships and how much money it would require. Flight costs are very variable currently, states close may drive. With the cost's unknown, it was assumed \$2000 per scholarship, some will be less depending on travel costs.
 - b.) Sarah W motioned for 7 Scholarships Jason D. seconded; all in favor, Approved.
 - c.) Sarah S. to ask members to submit their names for the scholarships (in accordance with the bylaws)

4. Approval of Minutes


- a.) Nancy's updates to be made, no other updates mentioned.
- b.) Motion to approve motion DDG, 2^{nd} CK no opposing, approved.

5. Open Discussion

- a.) Conference app for National Meetings but won't be used for regional meetings, too costly.
- b.) July 5th next meeting will that be a vacation issue? Consider moving the date of the meeting.
- c.) Updates none
- d.) Suggestions- none

1:00 PM - TECHNICAL SESSION

- 1. Concrete Admixture to Reduce Shrinkage Cracking (Mike Nelson, Indiana DOT, Office of Materials Management) See presentation at end of minutes.
 - Colloidal Silica; IC internal cure. Use of the material provides an alternate curing method to the contractors.
 - Products are proprietary and patented. One of the reasons why it's voluntary, and not a specification.
 - Material makes concrete more workable, and helps reduce cracking, among other benefits...
 - Used in both bridge decks (90 to date) and Overlays (22)
 - Contractors were given option to use, and they have taken advantage voluntarily, with no extra pay.. No specifications used, just two construction memoradums.
 - Purdue University is doing research. Published reports aren't available yet, but there are presentations.
 - Good discussion was held, with many states interested in the material.
 - Link for construction Memos –
 https://www.in.gov/dot/div/contracts/conmemo/con_memo.htm
 - Memos Indiana 22-02 and 22-04 attached with the presentation
 - Mike Nelson, Indiana mnelson@indot.in.gov

Decks

Benefits

Placement

- · Improved workability
- · No water applied on the surface
- · Longer window for finishing
- · Minimal bleed rate
- Eliminate evaporative retardants (90% water)
- · Consistent air entrainment
- · Lower pump pressure
- No wet curing (curing compound or plastic)

Hardened concrete

- · Pozzolanic (more nucleation sites)
- Cement/paste reduction
- Improved strength (Type 1L cement ??)
- · Minimal to zero cracking
- · Reduced permeability
- Reduced CH & Ca-Oxy (report coming)
- Hardened air ??

INDOT's original goal: Resolve issues behind the screed

Decks

Restrained Shrinkage ASTM C-1581 / AASHTO T-334

Net Time-to-Cracking,	Average Stress Rate, S	Average Stress Rate, S	Potential for
t _{cr} days	(MPa/day)	(psi/day)	Cracking
$0 < t_{cr} \le 7$	S ≥ 0.34	S ≥ 50	High
$7 < t_{cr} \le 14$	$0.17 \le S < 0.34$	25 ≤ S < 50	Moderate-High
14 t _{cr} ≤ 28	0.10 ≤ S < 0.17	15 ≤ S < 25	Moderate-Lov
t _{cr} > 28	S < 0.10	S < 15	Low

	REFERENCE	LFA AND E5+ COMBINATION	
Material/Action Item	(REF)	(LFA E5+ COMBO) Tel	
ASTM C 150,		De	
Buzzi Type I/II, pcy	608	608	
ASTM C 33, Concrete Sand, pcy	1250	1250	
Water, pcy	274	274	
ASTM C 33, LS 57/67,pcy	1750	1750	
ASTM C 494 Type A and F,			
Optima 258, fl oz per cwt	4.50	4.50	
LFA, fl oz per cwt	-	8.00	
E5+, fl oz per cwt	-	4.00	
Slump, in	7.50	6.50	
Density, pcf	147.0	151.2	
Temperature, F	69.0	74.5	

	REFERENCE,	LFA E5+ COMBO,
	AVERAGE	AVERAGE
Average Age at Cracking,		
Days	8.50	28.00
e at Cracking, STD DEV	0.75	0.00
rage Initial Strain, m/m	-0.01	0.00
Average Maximum		
Strain,m/m	-0.06	-0.09
Average Stress Rate,		
MPa/day	0.63	0.13
Stress Rate, STD DEV	0.12	0.00
Potential for Cracking	HIGH	MODERATE -LOW
AASHTO T334,		
15 DAY MINIMUM	FAIL	PASS

Source:

Intelligent Concrete Dr. Belkowitz May 2022

2. ITD Working Group Update (Mario Baggio, Alchemco)


- See the website for the ITD reports, application forms and guidelines. https://tsp2bridge.pavementpreservation.org/industry/itd/
- ITD is a national working group that came out of the TSP2 Bridge Program
- The AASHTO TSP-2 Innovative Technology Demonstrations (ITD) Program is a field demonstration program documented by an Independent Consultant and managed by the ITD Working Group, with TSP-2 oversight. The purpose is to introduce new and innovative preservation materials and technologies to owners of the nation's highway systems. Demonstrations involve products, services, processes, and equipment for highway and bridge preservation.
- Products with ITD projects include: (see presentation for contact info)
 - MPC Concrete Repair, Phoscrete
 - Box Culvert Maintainable Weep Hole Filters, Jet Filters
 - Transparent Stay-In-Place Forms, TrueTech Bridge
 - SME-PS Concrete Durability Enhancer, Indiana Soy Alliance
 - MPC + SME-PS, Phoscrete and Indiana Soy Alliance
 - MALP Concrete, Phoscrete
 - Galvanizing Compound for Metal Coating, Galvatech 2000

- Alchemco Waterproofing Protection for Highway Bridges
 - o ITD Report is pending.
 - O Questions Mario Baggio, Alchemco mario@alchemco.com

Innovative Technology: Integral Gel Waterproofing System

Alchemco **BridgeDECK Waterproofing Agent** produces a modified silicate gel material 'below the concrete surface' (*inside the concrete matrix*)

The gel is created by a chemical reaction between the calcium hydroxide that is present in the concrete (as a by-product of cement's hydration) and the chemical components of BridgeDECK Waterproofing Agent

By filling concrete porosity and cracks, the gel works as an integral waterproofing barrier that protects concrete from infiltration of water and water-soluble contaminants ... especially de-icing salts.

THE UNIQUENESS OF OUR SPRAY APPLIED WATERPROOFING

No other product offering combines the:

- Ability to seal future cracks (sustainability)
- Proven performance in the field since the 1970's
- Speed & ease of application (less down time)
- Up to 25-Year Warranty
- 'Money saving' solution to water problems
- Can't be damaged or deteriorate (long-term solution)

IMPRESSIVE PHYSICAL CHARACTERISTICS

- Densifies concrete (increases hardness/durability)
- Resistant to snow & ice melt ... great hydrostatic pressure ratings
- Allows outgassing = no trapped moisture
- VOC free ... environmentally friendly (green)
- o Potable water safe UL Certified: NSF/ANSI 61
- Doesn't change the appearance or the slipperiness coefficient of the structure
- o Colorless & odorless ... safe & easy to work with

PridgeDECK

SUMMARY

- Improves DURABILITY & SUSTAINABILITY of concrete structures
- Seals 'stable' cracks up to 2.0 mm wide
- VAPOR PERMEABLE. Allows concrete to breathe (outgassing) ...
 does not trap moisture within the concrete.
- · Highly Resistant to chemicals & chloride ions
- Acts as a DENSIFIER ... increases the hardness of concrete from 6 to 8 on the Mohs scale (similar to Granite)
- Excellent hydrostatic pressure ratings (1,300 feet / 400 meters)

PROS

- FAST APPLICATION ... resulting in far less 'down time'
- Gel formulation handles 'thermal stress' very well
- Non-toxic and VOC free ... completely recyclable after demolition of a structure
- LOWER APPLIED COST than most other methods!
- No mixing of products on-site ... eliminates error factor
- Can be applied on positive or the negative side ... although we highly recommend applying it to the positive side
- Can't be damaged, deteriorate or delaminate ... provides long-term waterproofing protection!

CONS

• Concrete surface must be dry to the touch, in order to begin application of waterproofing products (timing varies)

3. National Concrete Bridge Council Webinar Series, "Preserving & Extending the Life of Concrete Bridges"

- 6 short webinar style presentations on concrete repairs,
 - June 23, 2022 Fundamentals of Concrete
 - July 7, 2022 Evaluating Concrete Bridges
 - July 21, 2022 Analyze, Design & Select the Solution
 - Aug 4, 2022 Concrete Repair 101
 - Aug 18, 2022 Strengthening Bridge Assets
 - Sept 1, 2022 Delivering Long-Term Bridge Protection
- See attachments for flyer for more information
- Registration at https://us02web.zoom.us/webinar/register/4816533981829/WN_VkWEt89ES-OiOaSMtwIAaw

4. Next Monthly Meeting

• July 5, 2022 Any Challenges – Sarah S to see if the date should be altered, if so, an update email will be sent.

Notes:

News: Bill Oliva Wisconsin DOT, has retired.

Requests for Travel Scholarships for the MWBPP Regional meeting by **June 30th**, to Sarah Sondag. These scholarship attendees would be in addition to the normal 2 attendees from each member state.

Nancy H - All of the Midwest States have made their contributions to the TSP2 program!.

Linked In Page for TSP2 – Bridge Preservation – Join It!

Drew Storey – membership has 254 followers. Please join if you haven't already, and forward the invitation to your colleagues. Let's try to make sure that the Midwest has the largest number of members on this forum –

https://www.linkedin.com/company/tsp2-bridgepreservationpartnership

Attendance Chart – MWBPP Teleconference June 7, 2022

NCPP Representatives		Industry Representatives			
Darlene Lane	NCPP	\boxtimes	Tim Woolery	Adv. Chem. Tech.	
Nancy Huether	NCPP	\boxtimes	Brad Ehle	Adv. Chem. Tech.	
Chris Keegan	NCPP	\boxtimes	Lorella Angelini	Angelini Consulting	
Bouzid Choubane,	NCPP	\boxtimes	Patrick Martens	Br Pres & Insp Svcs	\boxtimes
			Allen Scarborough	CMC	\boxtimes
			Mike Stroia	CMC	
State Agency Representatives			Barritt Lovelace	Collins Eng.	\boxtimes
			Drew Garceau	Collins Eng.	\boxtimes
Sarah Wilson(Secretary)	Illinois DOT	\boxtimes	Thomas Collins	Collins Eng.	
Adam Post	Indiana DOT	\boxtimes	Marc Parker	Collins Eng.	
Jennifer Hart	Indiana DOT		Brent Toller	DS Brown	\boxtimes
Jeremy Hunter	Indiana DOT		Mark Ericson	ECHEM	
Mark Swiderski	Indiana DOT	\boxtimes	Ray Breer	ECHEM	
Joe Stanisz	Iowa DOT	\boxtimes	Andy Castillo	EMSEAL	
Scott Neubauer	Iowa DOT	\boxtimes	Diana Hellman	FujiFilm	\boxtimes
Dewight Jones	Iowa DOT		Jason Fogg	HDR, Inc.	
Dominique Shannon	Kansas DOT	\boxtimes	LJ Dickens	HNTB	
Don Whisler	Kansas DOT	\boxtimes	Ed Liberati	Hughes Group	
Jim Leaden (Vice-Chair)	Kansas DOT	\boxtimes	Blake Liberati	Hughes Group	
John Culbertson	Kansas DOT		Kevin Irving	Int. Zinc Assoc.	
Josh Rogers (Director)	Kentucky TC		Greg Heilman	Jet Filter System	
Dora Alexander	Kentucky TC	\boxtimes	Paul Vinik	GPI	
Brandon Boatman	Michigan DOT		Richard Dunne	GPI	\boxtimes
Jacob Creisher	Michigan DOT		Paul Jensen	Jensen Eng.	\boxtimes
Jason DeRuyver (Director)	Michigan DOT	\boxtimes	Dave Juntunen	Mott MacDonald	
Paul Pilarski	Minnesota DOT		Drew Storey (Vice Chair)	Mott MacDonald	\boxtimes
Sarah Sondag (Chair)	Minnesota DOT	\boxtimes	Bobby Scarpitto	Kwikbond	\boxtimes
Mark Spafford	Minnesota DOT		Gregg Freeman	Kwikbond	\boxtimes
Jerry Goodman	Missouri DOT	\boxtimes	Josh Bunderson	Metal Fatigue Soln.	
Todd Miller	Missouri DOT		Adam Hales	Phoscrete	
Fouad Jaber	Nebraska DOT	\boxtimes	Kyle Bartfay	Phoscrete	
Kent Miller	Nebraska DOT		Paul Imbrock	PoreShield	
Mark Traynowicz	Nebraska DOT				
Babrak Niazi	Nebraska DOT		Richard Huza	Salit Steel	
Miles Nelson	North Dakota DOT	\boxtimes	Derrick Castle	Sherwin Williams	\boxtimes
Ida Narbuvoll	North Dakota DOT	\boxtimes	Mark Hudson	Sherwin Williams	\boxtimes
Matthew Kurle	North Dakota DOT	\boxtimes	Aamer Syed	Sika	
Brad Noll	Ohio DOT	\boxtimes	Fabio Puzzo	Sika	
Jared Backs	Ohio DOT	\boxtimes	Siva Venugopalan	Siva Corrosion	

Mike Brokaw	Ohio DOT		Chris Davis	Structural Tech	
Walt Peters	Oklahoma DOT	\boxtimes	Tom Donnelly	Transpo	
David Coley	South Dakota DOT	\boxtimes	Michael Stenko	Transpo	
Todd Thompson	South Dakota DOT		Lawrence Kirchner	TranSystems	
Alex Pence	Wisconsin DOT		David Brodowski	TrueTech Bridge	
Philip Meinel	Wisconsin DOT		Peter Seibert	UHPC Soln.	\boxtimes
Ryan Bowers	Wisconsin DOT	\boxtimes	Kevin Stumpf	Uretek USA	
Travis McDaniel	Wisconsin DOT		Kevin Stull	Washer Coatings	
David Bohnsack	Wisconsin DOT	\boxtimes	Nick Graziani (Director)	Watson Bowman	\boxtimes
Anthony Stakston	Wisconsin DOT	\boxtimes			
Local Agency Represent	atives				
Mel Quick-Miller	Harrison Cty IN				
Javier Romero	Cook County, IL		Guest / Mixed Affiliation		
			Amir Rezvani	Infratek Solutions	\boxtimes
Academia Representativ	es		Caleb Austel	Hughes Group	\boxtimes
Basak Bektas	MN State Mankato		Dan Patacca	E-CHEM	\boxtimes
Glenn Washer (Director)	U of Missouri		Jonathan Sirianni	AASHTO	\boxtimes
Pat Conner (Director)	Indiana LAP				
			Steve Conley	ECHEM	\boxtimes
FHWA Representatives					
Larry O'Donnell	FHWA	\boxtimes			
Raj Ailaney	FHWA	\boxtimes			
Scott Stotlemeyer	FHWA	\boxtimes			
Tim Anderson (Director)	FHWA	\boxtimes			
			Guest Speakers		
			Mike Nelson	Indiana DOT	\boxtimes
			Mario Baggio	Alchemco	\boxtimes

Anyone shown with Unknown Affiliation can email the Secretary at Sarah.Wilson@illinois.gov with an update for the roll call.

Preserving & Extending the Service Life of Concrete Bridges

Brought to you by:

Understand concrete basics, deterioration mechanisms, and an overview of the repair process.

Date: June 23rd, 2022 **Time:** 2:00-3:30PM (EST)

Concrete Repair

Review concrete repair procedures, application techniques and best practices for desired outcomes.

Date: August 4th, 2022 **Time:** 2:00-3:30PM (EST)

Explore the different aspects of condition assessments, including concrete and post-tensioning investigation.

Date: July 7th, 2022 **Time:** 2:00-3:30PM (EST)

Strengthening Bridge Assets

Learn key strengthening techniques and various applications through case studies.

Date: August 18th, 2022 **Time:** 2:00-3:30PM (EST)

nizations, is pleased to bring you this summer's premier virtual workshop series on concrete bridges and how to repair, maintain, and extend their life cycle.

The National Concrete Bridge Council (NCBC), with its supporting member orga-

The 6-part series, supported by Structural Technologies, includes interactive sessions with industry experts sharing proven methodology which identifies root causes of issues encountered on concrete bridges and provides guidance for optimal solutions and design strategies. Understanding this holistic approach dispels perceived limitations in our ability to repair and preserve concrete bridges. Tools are provided to help owners and practitioners be the best possible stewards of critical transportation infrastructure. Certificates of attendance are available for each of these free virtual workshops.

Analyze, Design & Select the Solution

Ensure the best project solutions are implemented through repair analysis, design and material selection.

Date: July 21st, 2022 **Time:** 2:00-3:30PM (EST)

Delivering Long-Term Bridge Protection

Determine the best protections strategies for your concrete bridge whether it's cathodic protection, sealers, coatings or overlays.

Date: September 1st, 2022 **Time:** 2:00-3:30PM (EST)

Sponsoring Organizations:

Agenda – Monthly Teleconference Tuesday, June 7, 2022

Business Meeting: 12:30 – 1:00 PM Central Technical Session: 1:00 – 2:00 PM Central

Appendix 1 - Concrete Admixture to Reduce Shrinkage Cracking

Mike Nelson, Indiana DOT, Office of Materials Management

mnelson@indot.in.gov

Presentations

Indiana Construction Memos 22-02 & 22-04

MWBPP INDOT's Use of Colloidal Silica Michael Nelson, PE Concrete Engineer **INDOT Division of Materials & Tests** June 7, 2022

E5 Internal Cure and E5 Liquid Fly Ash

Full-depth decks

- 90 pours (26 in 2020, 41 in 2021, 23 in 2022)
- Added ES IC to existing mixes w/ curing compound only

 Memo 22-02 (optional zero cost change order)

 21 pours with 580# cement w/ E5 IC and LFA only

Overlavs

- 3 pours in 2020 (unsuccessful)
- · Added E5 IC to existing SFMC mix (658# cement)
- 19 pours in 2021
 - 600# cement w/E5 and LFA & fiber(no bagged silica)
 - Traditional 7-day wet cure

lemo 22-04 (optional - zero cost change order)

Paving

NextLeve

• 1 in 2021 (LFA only)

Broad participation

- 16 different contractors
- 8 different ready-mix companies
 Allen & Whitley Counties
- Purdue University, West Lafayette IN

Nano-Silica

Silica Fume

- · By-product of silicon chip manufacturing
- Pozzolanic Reactive with calcium hydroxide (CH)
- - (57 x more surface area than Portland cement/Fly Ash)

Nano-silica

- Manmade from salts and metals
- Pozzolanic Reactive with calcium hydroxide (CH)
- Two forms
 - · Very fine powder
 - (1714 x more surface area than Portland cement/Fly Ash)
 - Colloidal nano-silica

NextLeve

Decks

Benefits

Placement

- Improved workability
- No water applied on the surface
 Longer window for <u>finishing</u>
- · Minimal bleed rate
- Eliminate evaporative retardants (90% water)
- · Consistent air entrainment
- Lower pump pressure
- No wet curing (curing compound or plastic)

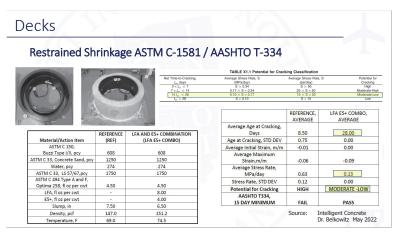
Hardened concrete

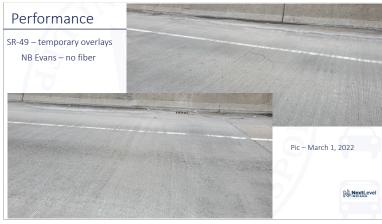
- Pozzolanic (more nucleation sites)
- Cement/paste reduction
 Improved strength (Type 1L cement ??)
- · Minimal to zero cracking
- Reduced permeability • Reduced CH & Ca-Oxy (report coming)
- Hardened air ??

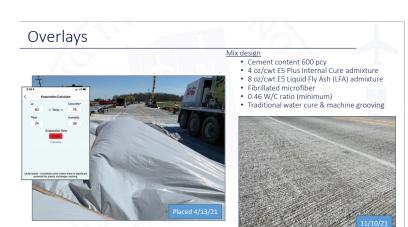
INDOT's original goal: Resolve issues behind the screed

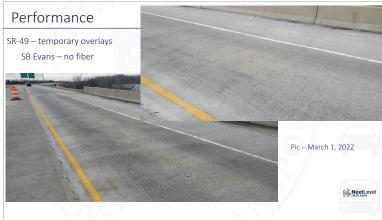
E5 Internal Cure and E5 Liquid Fly Ash

- Developed by Specification Products (Noblesville, IN)
- Colloidal silica (modified)
- Patented
 - Batch sequencing is critical
 - Particle composition and size range are unique
- "Internal Curing" and "Fly Ash" ??
 - Cement grains electrically bond more molecules of water due to tiny particle size
 - · More efficient hydration of cement particles

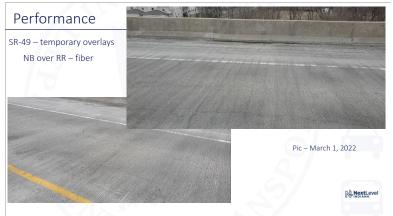

Decks

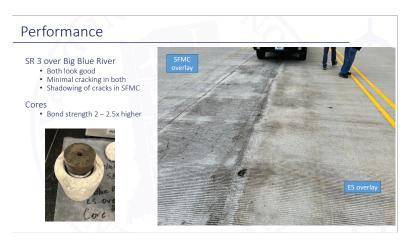

More forgiving





26" thick reinforced slab deck - 580# cement, 4 oz/cwt E5 & 8 oz/cwt E5 LFA





INDIANA DEPARTMENT OF TRANSPORTATION

100 North Senate Avenue Room N758-CM Indianapolis, Indiana 46204

www.in.gov/indot/

Eric Holcomb, Governor Michael Smith, Commissioner

April 04, 2022

CONSTRUCTION MEMORANDUM 22-02

TO: District Deputy Commissioners

District Construction Directors, Area Engineers, Project Engineers/Supervisors

Division of Materials and Tests

District Project Management Directors District Technical Services Directors

District Testing Engineers

FROM: Gregory G. Pankow, Chief Engineer of Construction

Division of Construction Management and District Support

SUBJECT: Alternate Curing Method for Structural Concrete using E5 Internal

Cure and E5 Liquid Fly Ash

SUPERSEDES: 21-05

E5 Internal Cure and E5 Liquid Fly Ash are a new type of concrete admixture that has been shown to provide significant benefits during the placement of concrete and in the overall quality of the in-place concrete. Some of the benefits include improved water retention, workability, pumpability and higher pozzolanic activity, which can create higher strength and reduced permeability.

To evaluate the performance of these admixtures, an alternate curing method was developed in lieu of the water curing requirements in 702.22 Standard Specifications. This alternate curing method is to be considered for bridge decks, slab bridges and reinforced concrete bridge approaches on existing and future construction contracts.

In lieu of the water curing requirements in 702.22, concrete may be placed and cured as follows. Concrete shall be in accordance with 702 except as follows:

Mix Design & Batching:

Mix Option 1:

1. The concrete mix design shall include the admixture "E5 Internal Cure" by Specification Products with a dosage rate of 4 oz/cwt of cementitious.

- 2. The concrete mix design shall include either 3% silica fume addition or 30% slag cement replacement per 709.05(c). Class C concrete mix designs shall be based on 658 lbs/cu yd of cement. The cement content shall not be increased.
- 3. The water-cementitious ratio shall be 0.420 to 0.490.
- 4. A water-reducing admixture is not required.
- 5. Ensure that the concrete mixture is fully wetted before adding the E5 Internal Cure admixture to the load.

Mix Option 2:

- 1. The concrete mix design shall include the following two admixtures by Specification Products: "E5 Internal Cure" with a dosage rate of 4 oz/cwt of cementitious and "E5 Liquid Fly Ash" with a dosage rate of 8 oz/cwt of cementitious.
- 2. Mix design shall be based on a cement content from 550 to 600 lbs/cu yd. The cement content shall not be increased above 600 lbs/cu yd. No other supplementary cementitious materials shall be added.
- 3. Minimum 28-day compressive design strength shall be 4,000 psi
- 4. The water-cementitious ratio shall be 0.44 to 0.49.
- 5. A water-reducing admixture, Type A, may be used.
- 6. Ensure that the concrete mixture is fully wetted before adding the E5 Internal Cure and Liquid Fly ash admixtures to the load.

During placement:

- 1. A representative from Specification Products shall be on site during placement.
- 2. Each truck shall mix the concrete on site for a minimum of 30 seconds at mixing speed before discharging concrete.
- 3. Water shall not be applied to the plastic concrete surface.
- 4. To avoid damaging the air void system when the slump is greater than or equal to 5 inches (≥ 5 in.) minimal mechanical vibration shall be used. To the extent practical handheld vibrators should only be used as needed to consolidate concrete along copings or in areas that are heavily congested with reinforcing steel.
- 5. Products marketed as "evaporative retardants" or "evaporation reducers" shall not be used. Some common trade names for these products include Sika Film, MasterKure ER50 and Eucobar.
- 6. The following products may be used as finishing aids as directed by the manufacturer:
 - a. E5 Miracle Aid by Specification Products
 - b. EZ Finish by Specified Surfaces
 - c. The Juice by M2 Solutions.

After placement:

1. Curing shall be for a minimum period of five days (120 h) and until flexural test beams indicate a modulus of rupture of 600 psi. Curing shall consist of covering

- with plastic sheeting (minimum 4 mil thickness). The sheeting shall be white. Sheeting shall be applied as soon as possible.
- 2. Acceptance beams shall be field cured by wrapping the beams in wet burlap and then wrapping in plastic. The beams will be placed near the structure and shaded from direct sunlight. It is imperative that the burlap around the beams remain moist during the curing period.
- 3. The requirements of 702.24(a) are modified as follows. Equipment or traffic will not be allowed on structures for a minimum of 120 hours and until flexural test beams representing all concrete required to carry live loads indicate a modulus of rupture of 600 psi.
- 4. The requirements of 702.14(b)1 and 702.14(b)2 are modified as follows. Falsework and/or falsework jacks shall remain in place at least 120 hours after concrete placement and until flexural test beams indicate a modulus of rupture of 600 psi or greater has been achieved.
- 5. For the purpose of determining cold weather concrete conditions in accordance with section 702.11 the minimum curing period shall be continuous for 168 hours after placement.
- 6. The Department's project personnel will provide feedback to the Concrete Engineer at Department's Division of Materials and Tests, including strength data and visual observations both during the pour and curing periods.

The Contractor shall submit a request to use one of the two E5 mix options and alternate curing method to the Department's project personnel for approval. The request shall be submitted a minimum of seven days prior to placement. Project personnel will then forward the request to the Area Engineer and the Concrete Engineer at the Division of Materials and Tests. Upon approval, a zero-cost change order will be processed to add the appropriate contract pay item(s) with a supplemental description as follows:

609-06259 Reinforced Concrete Bridge Approach, E5 Internal Cure 704-51002 Concrete, C, Superstructure, E5 Internal Cure

Any questions should be directed to the Concrete Engineer at Materials and Tests, Mike Nelson mnelson@indot.in.gov.

GGP/mwn

INDIANA DEPARTMENT OF TRANSPORTATION

100 North Senate Avenue Room N758 - CM Indianapolis, Indiana 46204

www.in.gov/indot

Eric Holcomb, Governor Mike Smith, Commissioner

May 12, 2022

CONSTRUCTION MEMORANDUM 22-04

TO: District Deputy Commissioners

District Construction Directors

District Technical Services Directors

District Area Engineers, Project Engineers/Supervisors

District Project Management Director, Project Management Director

District Traffic Engineers, District Testing Engineers

District LPA Coordinators, Field Engineers, Division of Materials and Tests

FROM: Gregory G. Pankow, P.E., Director

Division of Construction Management and District Support

SUBJECT: Alternate Overlay Mix Design Using E5 Internal Cure and E5 Liquid Fly Ash

E5 Internal Cure and E5 Liquid Fly Ash are a new type of concrete admixture that has been shown to provide significant benefits during the placement of concrete and in the overall quality of the in-place concrete. Some of the benefits include improved water retention, improved workability, reduced cracking and higher pozzolanic activity, which can create higher strength and reduced permeability.

An alternate bridge deck overlay mix design may be used while the Department continues to evaluate the performance of these admixtures. In lieu of Latex Modified Concrete per 722.05(a) or Silica Fume Modified Concrete per 722.05(c) Standard Specifications, concrete may be in accordance with 722 and the following exceptions:

Mix Design & Batching:

- 1. The concrete mix design shall include the following two admixtures by Specification Products: "E5 Internal Cure" with a dosage rate of 4 oz/cwt of cementitious and "E5 Liquid Fly Ash" with a dosage rate of 8 oz/cwt of cementitious.
- 2. Mix designs shall be based on a cement content from 600 to 620 lbs/cu yd. The cement content shall not be increased above 620 lbs/cu yd. No other supplementary cementitious materials shall be added.
- 3. The water-cementitious ratio shall be 0.45 to 0.49.
- 4. Fibrillated polypropylene fiber with dosage per manufacture (min 1.5 lbs/cu yd).
- 5. Slump at time of placement (AASHTO T 119): minimum 5 in., maximum 8 in.
- 6. Compressive strength: 3,200 psi at 7 days, 4,200 psi at 28 days.
- 7. A water-reducing admixture, Type A, may be used.

- 8. Ensure that the concrete mixture is fully wetted before adding the E5 Internal Cure and E5 Liquid Fly Ash admixtures to the load.
- 9. The minimum batch size shall be 2 cu yds. The maximum batch size of 80% shall not apply.
- 10. An additional 15 seconds of mixing time shall be added during batching of each load.

During placement:

- 1. A representative from Specification Products shall be on site during placement.
- 2. Water shall not be applied to the plastic concrete surface.
- 3. Products marketed as "evaporative retardants" or "evaporation reducers" shall not be used. Some common trade names for these products include Sika Film, MasterKure ER50 and Eucobar.
- 4. The following products may be used as finishing aids as directed by the manufacturer:
 - a. E5 Miracle Aid by Specification Products
 - b. EZ Finish by Specified Surfaces
 - c. The Juice by M2 Solutions.

After placement:

- 1. Curing shall be for a minimum period of 7 days and consist of 120 h of wet cure followed by 48 h of dry cure. Wet curing shall be in accordance with 702.22(a) Standard Specifications and pre-wetted burlap and soaker hoses shall be used. The deck shall remain completely covered with burlap and white plastic during the dry cure period except the soaker hoses shall be off. The bridge deck may be opened to traffic after the dry cure period and when the average compressive strength of cylinders is 3,200 psi or greater.
- 2. Strength testing will consist of the average of three 4 in. by 8 in. cylinders or two 6 in. by 12 in. cylinders. The cylinders will be cured in accordance with AASHTO T 23 Section 10.1, Standard Cure conditions. The frequency for all testing will be per the Frequency Manual and will be the same as for silica fume modified concrete overlay.

The Contractor shall submit a request to use the alternate overlay mix design along with the proposed CMDS to the Department's project personnel for approval a minimum of 14 days prior to the trial batch. Project personnel will then forward the request to the Area Engineer, the Concrete Engineer at the Division of Materials and Tests and District Testing Engineer. Upon approval, a zero-cost change order will be processed to add the appropriate contract pay item with a supplemental description as follows:

722-12899 Bridge Deck Overlay, E5 Internal Cure

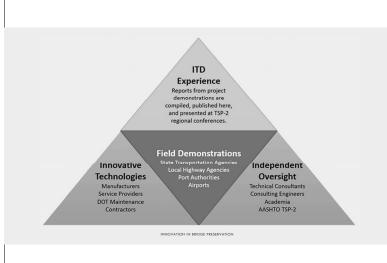
Any questions should be directed to the Concrete Engineer at Materials and Tests, Mike Nelson mnelson@indot.in.gov.

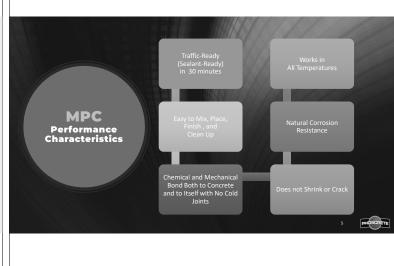
GGP/mwn

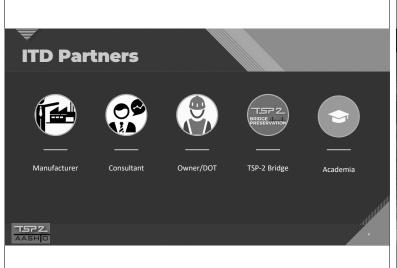
Agenda – Monthly Teleconference Tuesday, June 7, 2022

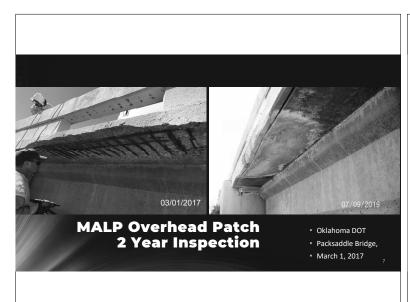
Business Meeting: 12:30 – 1:00 PM Central Technical Session: 1:00 – 2:00 PM Central

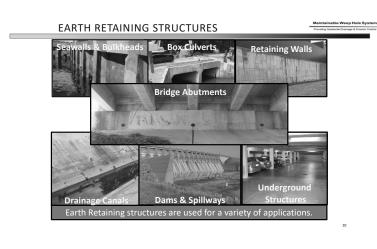
Appendix 2 – ITD Working Group Update

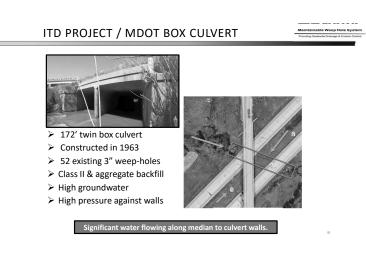

Mario Baggio, Alchemco

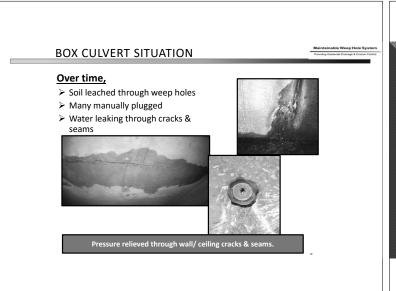

mario@alchemco.com

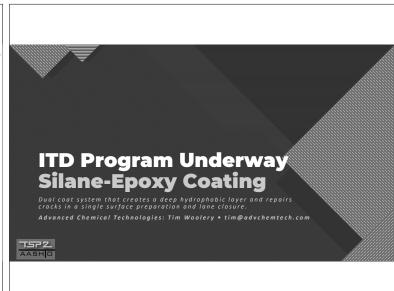

Presentations

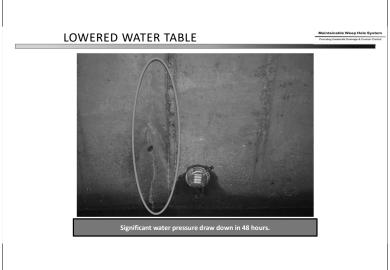


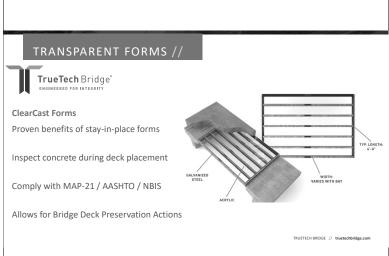










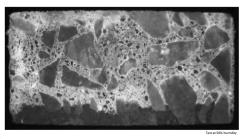


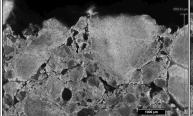
SUMMARY //

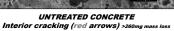
ClearCast Forms
Allow for Deck Inspection During &
After Construction

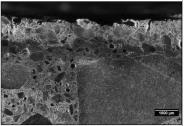
Improve on SIPF Durability

Easy for Contractors to Use


Help Extend Life of Deck with Bridge Preservation Actions

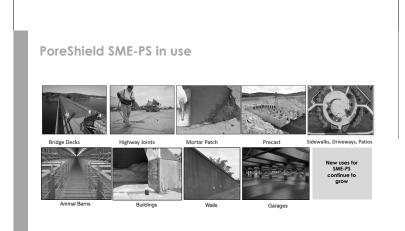

TRUETECH BRIDGE // truetechbridge.com

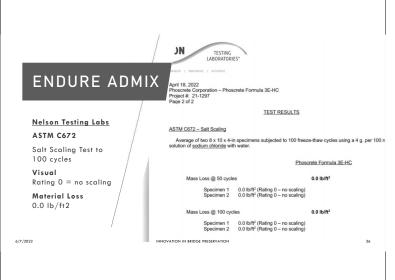

PoreShield enhances durability from within the pores, blocking water/ion ingress...



Fluorescent dye shows PoreShield SME-PS filling concrete pores, preventing moisture and ion ingress. Once in the pores, PoreShield remains fluid and adjust to cracking or other changes in concrete over time

PoreShield prevents water & salt damage below the concrete surface Cross-Section Photomicrographs ASTM C 672 (modified): 10 weeks of daily Freeze/Ihaw (70 Cycles), 40 g/L CaCl₂




SME-PS TREATED CONCRETE
No interior cracks < 10mg mass loss

PoreShield SME-PS in use

Vichemco

Vichemco

FASTER APPLICATION LESS DOWN TIME

APPLYING WATERPROOFING

Truck Mounted Spray Rig applying 40,000+ square feet per hou

SOUTH DAKOTA - D.O.T. Application: Hwy 12 - Millbank, SD

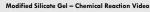
WASHINGTON - D.O.T. Highway Bridge Application

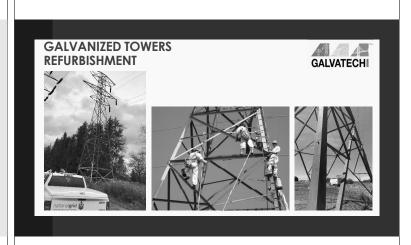
FASTER APPLICATION LESS DOWN TIME

SOUTH DAKOTA - D.O.T. Application: Hwy 12 - Millbank, SD

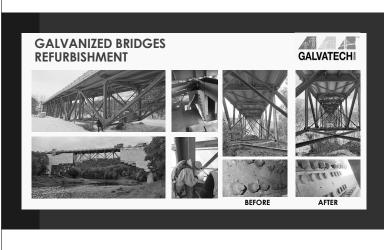
Vichemco

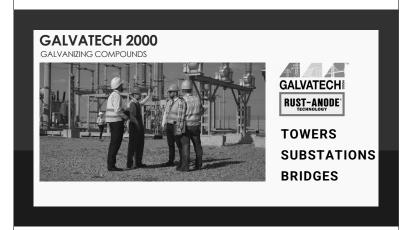
IOWA - Highway Bridge Application

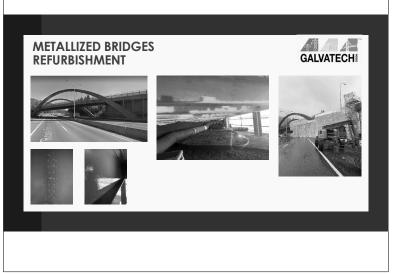

MINNESOTA - D.O.T. Application: Part of the TSP2 ... ITD Task Force Project to Evaluate New Technologies

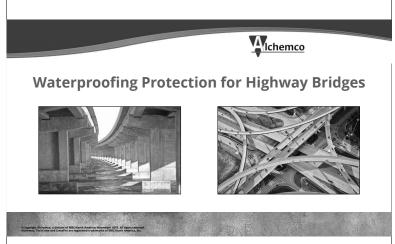

Both the Waterproofing and Accelerating Agent are spray-applied to the concrete surface (horizontal or vertical).

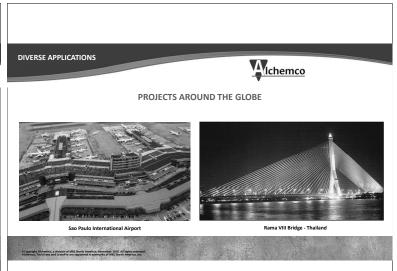
The waterproofing gel forms $34^{\prime\prime\prime}$ below the surface of the concrete ... filling all of the cracks, voids, fractures, etc. This protects the concrete matrix and prevents corrosion of the steel reinforcement


Waterproofing chemicals stay resident in the concrete slab and react with the water that enters the slab from all 'new cracks' that occur in the future ... to form more gel and seal those cracks. This cycle repeats itself for 15 – 25 years, depending on which waterproofing option is chosen









DIVERSE APPLICATIONS Alchemco PROJECTS AROUND THE GLOBE

In 2018, Alchemco acquired the formulas & assets of TechCrete, LLC. - a creator & manufacturer of superior waterproofing products that have protected concrete structures around the world for the past 45 years

Infrastructure projects such as:

- Infrastructure projects such os:

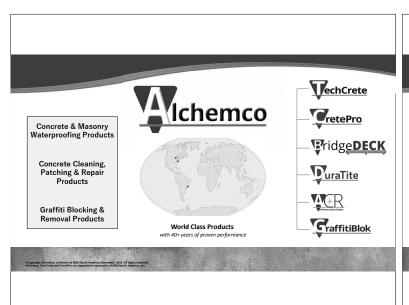
 Parking Structures

 Highway Bridges

 Stadiums

 Ports & Marinas

 Water Treatment Plants


 Containment Vessels & Water Parks

 Hydroelectric Plants

 Dams & Tunnels



PridgeDECK

Innovative Technology: Integral Gel Waterproofing System

Alchemco **BridgeDECK Waterproofing Agent** produces a modified silicate gel material 'below the concrete surface' (*inside the concrete matrix*)

The gel is created by a chemical reaction between the calcium hydroxide that is present in the concrete (as a by-product of cement's hydration) and the chemical components of BridgeDECK Waterproofing Agent

By filling concrete porosity and cracks, the gel works as an integral waterproofing barrier that protects concrete from infiltration of water and water-soluble contaminants ... especially de-icing salts.

pyright Alchemon, a division of MGC North America; November 2018. All rights reserved.

Award Winning - Spray Applied Waterproofing Systems Biochemically Modified - Silicate Gel Forming Technology

Copyright Alchemics, a division of MDC North America; November 2018. All rights reserved. themes, Techtrete and CrosePro are registered trademarks of MBC North America, inc.

Pridge**DECK**

Close up view of concrete sections: untreated and treated

Ecopyright Alchemics, a division of MSC North America; November 2015. All rights reserved. Alchemics, TechCrete and CretePre are registered trademarks of MSC North America, inc.

PridgeDECK

Biochemically Modified Sodium Silicate Waterproofing Demonstration of the gel formation that occurs 'inside' the concrete

6 Cappright Alchemos, a division of MDC North America, November 2018. All rights reserved. Alchemos, Techtrete and CrosePro are registered trademarks of MSC North America, Inc.

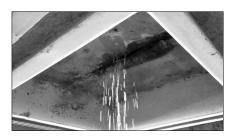
Demonstrations

Pridge**DECK**

Demonstration

Parking Structure UT – Chattanooga

Top side of Concrete Slab ... with 1 inch of standing water, showing the area that has been cleaned (4 parking spaces) on a very old, and dirty parking structure.


NOTE: the white piece of metal is covering a huge crack that you'll see on the next slide

pyright Alchemica, a division of MSC North America, November 2018. All rights reserved.

Pridge DECK

Demonstration

Parking Structure – Demo Area

Underside of Concrete Slab ... showing where the cracks & leaks were (stains), and how they have stopped leaking ... even though there is standing water up above

What were you doing in 1988?

2020 2030 2010

'Documented' Long-Term Protection

In 1988, TC 2500 was spray-applied to this leaking parking structure

The watertightness of the parking deck was confirmed in August 1993 ... and a 100% watertight seal was once again confirmed in April 2017

There has now been 34 years of watertight performance without any interim maintenance being performed on this concrete structure

Pridge **DECK**

THE UNIQUENESS OF OUR SPRAY APPLIED WATERPROOFING

No other product offering combines the:

- Ability to seal future cracks (sustainability)
- Proven performance in the field since the 1970's
- Speed & ease of application (less down time)
- Up to 25-Year Warranty
- 'Money saving' solution to water problems
- Can't be damaged or deteriorate (long-term solution)

IMPRESSIVE PHYSICAL CHARACTERISTICS

- Densifies concrete (increases hardness/durability)
- o Resistant to snow & ice melt ... great hydrostatic pressure ratings
- Allows outgassing = no trapped moisture
- VOC free ... environmentally friendly (green)
- Potable water safe UL Certified: NSF/ANSI 61 Doesn't change the appearance or the slipperiness
- coefficient of the structure Colorless & odorless ... safe & easy to work with

PridgeDECK WATERPROOFING SYSTEM COMPARISON BridgeDECK Waterproofing 25-year 'material only' warranty BridgeDECK PROtectant Plus BridgeDECK PROtectant TEP ONE Spray Waterproofing Let dry & then Water Spray Waterproofing Let dry & then Water TEP TWO Spray C&V Treatment Spray Accelerator Let dry & then Water Spray C&V Treatment

Pridge DECK

DOT CONCERNS WHEN ANALYSING NEW TECHNOLOGIES FOR DECK WATERPROOFING AND PROTECTION

- Lane Closure Time to Traffic? Very short
- Life Expectancy How often do I have to reapply? Up to 25 years

- Modulus Is it rigid or flexible? Flexible Gel
 Will it penetrate microcracks? (viscosity) Yes
 What are the preparation requirements Pressure Wash & dry surface
- What is the temperature range for application? 40 F and rising
- Cost Low
- Lifecycle cost Very low

Pridge **DECK**

FASTER APPLICATION LESS DOWN TIME

APPLYING WATERPROOFING

4-Wheeler Spray Rig

Iowa D.O.T. Application

Pridge DECK

Spray Applied Gel Forming Waterproofing ...

... approximate application rate is 20,000 square feet per hour when pumped directly from the drum

mco, a division of NBC North America; November 2018. All rights sets and CrecePro are registered trademarks of MBC North Americ

Pridge**DECK**

FASTER APPLICATION LESS DOWN TIME

APPLYING WATERPROOFING

Truck Mounted Spray Rig applying 40,000+ square feet per hour

South Dakota D.O.T. Application: Hwy 12 - Millbank, SD

nco, a division of MIC North America; November 2011. All rights res ete and CretePro are registered trademarks of MIC North America.

Pridge DECK

OKLAHOMA D.O.T. - 15,000 sf per hour direct spray BridgeDECK PROtectant Plus

WASHINGTON D.O.T.

Post Application Waterina

PridgeDECK

FASTER APPLICATION LESS DOWN TIME

Truck Mounted Spray Rig Watering

South Dakota D.O.T. Application: Hwy 12 - Millbank, SD

Alchemco Waterproofing Systems

Selected U.S. Bridge Projects

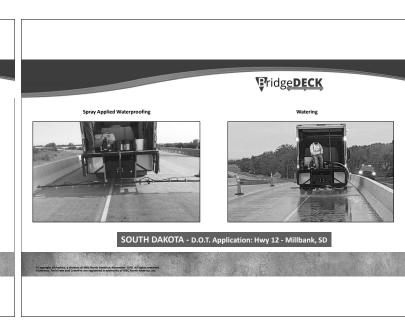
© Copyright Alchanco, a division of MDC North America, Neverther 2018, All rights reserved.

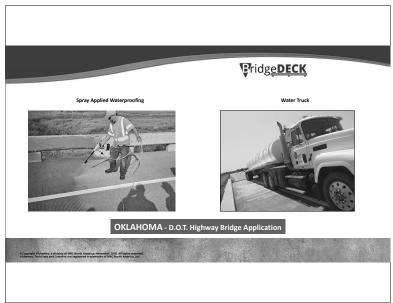
Alchanco, Technology and Consider are partitioned trademarks of MIC North America, he

Minnesota - D.O.T. Application: Part of the TSP2 ... ITD Task Force Project to Evaluate New Technologies

opyright Alchemico, a division of MSC North America: November 2015. All rights reserved.

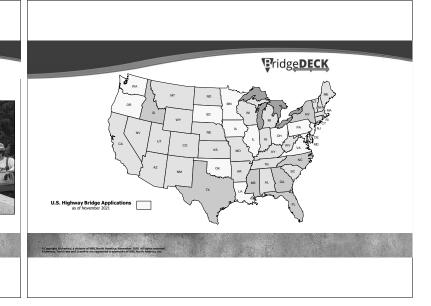
Spray Applied Waterproofing Watering WASHINGTON - D.O.T. Highway Bridge Application





DELAWARE - D.O.T. Application: Jersey Barrier Protection

Copyright Alchemos, a division of MBC North America; November 2018. All rights reserved.
Alchemos, TechCrete and Creek're are resistened trademarks of MBC North America. Inc.


New Jersey - D.O.T. Highway Bridge Applications Stepring shows of from a first flament flament of the flament flament and the flament flament of the flament flament

Pridge**DECK**

DELAWARE - D.O.T. Application: Jersey Barrier Protection

pyright Alchemics, a division of NIDC North America; Nevember 2018. All rights reserved. emics, TechCrete and CresePro are registered trademarks of NIBC North America, Inc.

Pridge DECK

PENNSYLVANIA - Fort Pitt Bridge

CCopyright Alchemes, a division of MDC North America: November 2018. All rights reserved.

Pridge DECK

Alchemco Waterproofing Systems

Selected International Bridge Projects

6 Copyright Alchemos, a division of MSC North America, November 2018. All rights reserved Alchemos, YachCrete and CretePro are registered trademarks of MSC North America, Inc.

Pridge**DECK**

Nhat Tan Bridge – Hanoi, Vietnam

100,000 square meter concrete bridge deck (8 lanes wide) as it was constructed in 2013-14.

The bridge provides a high-speed connection between Hanoi City and the Noi Bai International Airport.

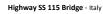
Pridge DECK

Tyrsuv Sad Overpass – Czech Republic

Copyright Alchemico, a division of MIC North America; November 2018. All rights reserved.

ECopyright Alchemics, a division of MSC North America; November 2018. All rights reserved Alchemics, TechCrete and CreteFro are registered trademarks of MSC North America, Inc.

Fridge**DECK**



My Thuan Bridge – Vinh Long City, Vietnam

CCopyright Alchemic, a division of MDC North America; Neverther 2018. All rights reserved.
Alchemics, TechCress and CosePro are registered trademarks of MDC North America, Inc.

\\$ridge**DECK**

Tarif Interchange – Abu Dhabi, United Arab Emirates

ECopyright Alchemico, a division of MSC North America; November 2018. All rights reserve Alchemico, TechCreto and CretoPro are registered trademarks of MSC North America, Inc.

Slide 44

Peter Kesser, 6/3/2020

Pridge DECK

New Construction Freeway – Taipei, Taiwan 65,000 square meters

© Copyright Alchemics, a division of MIC North America, November 2018. All rights reserved

Pridge DECK

Rama VIII Bridge Bangkok, Thailand

Pridge**DECK**

SUMMARY

- Improves DURABILITY & SUSTAINABILITY of concrete structures
- Seals 'stable' cracks up to 2.0 mm wide
- VAPOR PERMEABLE. Allows concrete to breathe (outgassing) ...
 does not trap moisture within the concrete.
- Highly Resistant to chemicals & chloride ions
- Acts as a DENSIFIER ... increases the hardness of concrete from 6 to 8 on the Mohs scale (similar to Granite)
- Excellent hydrostatic pressure ratings (1,300 feet / 400 meters)
- FAST APPLICATION ... resulting in far less 'down time'
- Gel formulation handles 'thermal stress' very well
 Non-toxic and VOC free ... completely recyclable after demolition of a structure
- LOWER APPLIED COST than most other methods!
- No mixing of products on-site $\dots \textit{eliminates error factor}$
- Can be applied on positive or the negative side ... although we highly recommend applying it to the positive side Can't be damaged, deteriorate or delaminate ... provides long-term waterproofing protection!

CONS

• Concrete surface must be dry to the touch, in order to begin application of waterproofing products (timing varies)

mics, a division of MBC North America; Nevember 2018. All rights reserved, rete and CretePro are registered trademarks of MBC North America, inc.

Pridge**DECK**

QUESTIONS?